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Introductory Outline 

Since experimental psychology mostly involves discrete responses at discrete times, 
it had no great compatibility with the largely continuous mathematics of the 
nineteenth century. But this has changed radically with the growth of mixed dis- 
crete and continuous ideas: set theory, probability and stochastic processes, and 
ordered algebraic structures. In this paper, a variety of specific examples of model- 
ing are drawn from sensation and perception, learning and memory, measurement 
and scaling, and cognition and decision-making. Four conclusions are drawn. (1) 
Not everything that looks both mathematical and psychological is actually very 
satisfactory modeling. (2) We  have not been as successful as we would like in 
separating theories of the organism from the boundary conditions of specific experi- 
ments. And when we fail to do so, it is difficult for knowledge to accumulate. ( 3 )  
Theories are either stated at just one level (behavioral) or at two levels (cognitive as 
well as behavioral), and behavior is explained in terms of mental or physiological 
concepts. The latter, although highly appealing, suffer from severe problems of 
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nonidentifiability of explanatory concepts unless physiological data can be brought 
to bear. This has only really been done successfully in sensory work. (4) The 
apparently happy match of stochastic processes with experimental procedures has 
suffered from the need to cope with the control or strategy flexibility exhibited by 
subjects. This has led many to believe computer simulation is the easy way out. 
Some doubts are expressed. 

Were one to take seriously the idea that scientific psychology began when Wundt 
founded a formal laboratory in 1879, one would have considerable trouble in 
understanding the initial interplay between mathematics and psychology. Among 
others, Fechner and Helmholtz would be banished, and that makes quite a dent in 
the early history of psychophysics. Of course, most of our graduate students, close 
adherents that they be of William James, would applaud the banishment of early 
psychophysics and would, no  doubt, urge it for all of psychophysics. 

The Growth of Mathematics Compatible 
with Experimental Psychology 

The Nineteen th-Cen tury Incompatibility: Continuous Mathematics 
and Discrete Psychology 

In a way, it is somewhat surprising that mathematics and psychology were partners 
early on at all. Consider the mathematics available at the time, say, in the third 
quarter of the last century. Basically one had Euclidean geometry, which only a few 
mathematicians were aware was in the process of being dethroned as the geometry; 
various bits and pieces of algebra, especially linear algebra; analytic geometry, 
which is a lovely exploitation of structural parallels between algebra and geometry; a 
miscellany of results about the integers (number theory); and most important of all 
for applications, analysis-the calculus, ordinary and partial differential equations, 
theory of functions of a complex variable, Laplace and Fourier transforms, and the 
like-the basis on which physics had become mathematized, general, and predic- 
tive over the preceding two centuries. T o  a good first approximation, the mathenia- 
tician or physicist who was likely to think about psychology was one who was 
familiar primarily with the mathematics suited to continuous or mildly discontinu- 
ous phenomena. 

By contrast, the methods being evolved by experimental psychologists were 
highly discontinuous. Laboratory responses, then as now, usually were discrete 
events in time-a key pressed, a word spoken, a peck observed-and more often 
than not they were forced to be doubly discrete by making the times at which they 
could occur-trials-discrete as well. Even the moderately popular reaction times, 
which we now think of as continuous random variables, were not readily captured 
using the methods of analysis. 
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The widespread use of limited response alternatives occurring at prescribed times 
is a fact of laboratory psychology that has greatly influenced our history. From the 
point of view of this symposium, it prescribed rather closely what mathematics is 
compatible with our data. More generally, however, it has forced a radical idealiza- 
tion of what is involved in the interaction between organism and environment. 

One Twentieth-Century Compatibility: Probability and Statistics 

At the end of the last century and the beginning of the present one, the develop- 
ment of set theory, which very neatly put in the same framework finite, countable, 
and continuous sets, was an alnlost ideal match to the methods of the experimental- 
ist. This became especially apparent with the creation during much the same period 
of probability theory, with its identification of chance events as sets, with the 
incorporation of the crucial concept of independence of events into the measure- 
theoretic ideas underlying the concept of an integral, with the careful isolation of 
the empirically essential concept of a random variable and its distribution function, 
and with the resulting evolution of ideas about estimation, inference, and correla- 
tion that co~lstitute statistics. As long as one was willing to ignore response times as a 
measure of behavior, which it was easy to do since their accurate recording was 
rather awkward until recently, the observed data fit well the developing mathemat- 
ics. With minor effort, relative frequencies could be extracted from data, and they 
looked like estimates of probabilities. True, there was the issue of whether the 
observations are actually independent and the strong possibility that the underlying 
probabilities somctimes are not fixed, as in learning, but a basic compatibility 
appeared to exist. 

The earlier growth of analysis was symbiotic with both the field theories of 
physical force-gravity and electromagnetism-and the continuous thcories of 
matter, in solid, liquid, and gaseous states; whereas, the later growth of probability 
and random variables was highly compatiblc with the largely discrete methods of 
psychology. It is, of course, true that statistics and probability have found wide- 
spread use throughout the social sciences and to a degree in the biological and 
physical ones, but I daresay that nowhere has this sort of modeling been more 
compatible than with experimental psychology. 

Some Developing Incompatibilities 

This clear compatibility of the probability models and the major methodological 
constraints of much of experimental psychology-discrete responses at discrete 
points of time-coupled powerful and developing mathematical methods together 
with vast aggregates of data and well-explored paradigms for getting additional data 
when needed. Such coupling was especially conspicuous in two areas: sensation 
and learning, topics which I discuss more fully later. During the time from 1925 to 
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1965, when rnuch of the attempt to exploit the possibilities was under way, it was 
apparent that some limitations marred the picture. Like many obvious things, little 
was said about them in print, but much informal conversation together with subse- 
quent events makes clear that the limitations were widely recognized. I shall cite 
three. 

First, the great'body of operant data was mostly ignored by model-builders. The 
reason was not so much Skinner's firm opposition, largely accepted by his disciples, 
to modelers (Skinner, 1950), although that was surely a factor, as it was the fact that 
the data were from free-response situations and so did not exhibit the familiar 
discrete trial structure. 

Second, most of the models dealt with response probabilities but not response 
times. Yet a growing body of evidence suggested that these times exhibit an inter- 
esting, if complicated, structure. Moreover, the view began to be expressed quite 
explicitly that perhaps these continuous measures provide an important key to 
studying hypothesized internal decision processes. 

Third, increasing evidence from cognitive experiments showed that subjects have 
varied strategies of coping with more-or-less complex perceptual, verbal, and mem- 
ory tasks. And it has been less and less clear how to adapt stocliastic processes to deal 
with them. Among other things, the paradigm of fixed, usually small, sets of 
response alternatives pretty well excluded any adequate study of verbal behavior 
and, more generally, of any responses that exhibit a degree of creativeness. 

The past fifteen years have seen major attempts to break out of these limitations. 
The first two are a part of my story and I talk about them below. The third has more 
to do with the growth of modern linguistics and psycholinguistics, artificial intelli- 
gence, and parts of cognitive psychology about which I am not very expert, so I shall 
leave that to others. 

A Second Twen tie th-Cen tury Compatibility: 
Abstract Algebra and Measurement 

Before turning to more detailed matters, let me mention another part of my story, a 
second type of application of set theoretic methods to our problems. This century 
has seen a flowering of what is called "modern" or "abstract" algebra. It involves the 
isolation of structures that can be thought of as a collection of objects which are 
related to one another by means of operations-something like addition or multi- 
plication-and/or by means of an ordering-something like greater than of num- 
bers-and/or by means of other more complex relations. Such structures, whole 
classes of them, are studied by working out the mathematical consequences of 
axioms that describe how the operations and other relations behave. The axiomatic 
method is ancient-it was, after all, Euclid's method for organizing geometric 
results into a systematic statement of axioms and the development of their conse- 
quences as formal theorems-but it played almost no role in the flowering of 
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analysis following the invention of the calculus by Newton and Leibnitz. By con- 
trast, modern mathematics has seen a number of deep and beautiful axiomatic 
developments, among them group theory and topology. 

It had been clear for much of the last century-at least since Helmholtz (18871 
1930)-that certain classes of ordered algebraic structures have some bearing on the 
widespread use of numbers in science. True, numbers call enter just by counting 
instances, which is how we estimate probabilities. But that is not how classical 
physics got the numerical measures with which we are all familiar, the ones to 
which units such as meters, ergs, ohms, and so on are attached. Rather, the 
structure of the system of numbers somehow systematically mimics certain data 
structures: greater than of numbers more-or-less accurately reflects an empirical 
ordering such as the tipping of an equal-arm pan balance, and the operation of 
addition reflects what happens when two objects are combined by placing them 
together on the same pan. Indeed, one can argue the view that any science must 
take its start from crude, qualitative changes that can be unambiguously perceived 
with the unaided senses, and the first theoretical task is to formulate laws about such 
observations, from which it may then be possible to provide a convenient numerical 
representation. At least, this is what appears to have been done, almost uncon- 
sciously, in developing the number system and using it to represent basic physical 
phenomena. Thus, for physics, the only purpose in actually developing axiomatic 
theories of measurement is to understand exactly what had so successfully evolved 
over centuries of commerce, barter, and finally scientific systematizing. 

Matters have not been so simple for the social and behavioral sciences, in partic- 
ular, psychology. Measurement has not come easily, and it is frustrating. We all 
speak of endless attributes that seem to exhibit the most essential feature of a 
measure, namely, order. There is more or less of utility, of intelligence, loudness, 
hunger, aggressiveness, fear, and so forth. 

Such are our variables, our subject matter; yet it is doubtful if we know how to 
measure any of them in a fully satisfactory manner. That fact, perhaps more than 
any other, has pervaded our science in its first century. T o  be sure, we have a multi- 
million dollar industry based on the "measurement" of intelligence, but I doubt if 
there are many scientific psychologists who have much confidence that we know a 
great deal about the concept of intelligence or how to measure it well. Loudness and 
brightness remain to this today problematic in psychophysics, with no real consen- 
sus on how best to measure them in the service of developing psychophysical 
theory. Hunger we continue to index by hours ofdeprivation, knowing full well that 
that is not true for ourselves. 

Our measurement problems lie at two levels. First, there is the question of how to 
order the attributes empirically. How do we decide whether a particular white, 
middle-class, well-educated male is more or less intelligent than, say, a black, 
ghetto-educated school-drop-out female? How do we decide whether a rat is equally 
hungry on two different experimental occasions? For the most pgrt-psychophysics 
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may be the major exception-we have been unable to solve this empirical problem 
in an intellectually satisfying, principled way. And without'a solution, measure- 
ment is blocked. 

The second problem, the mathematical one, assumes an ordering is given, and it 
concerns itself with the properties exhibited by the ordering and with the classes of 
numerical representations that are compatible with those properties. A great deal of 
work has been carried out on this topic, and we understand quite fully the structures 
that have been important in physics and the generalizations that may prove impor- 
tant in psychology, once we get adequate empirical orderings of attributes of interest. 

Psychophysics and Perception 

Representation of Signals as Random Variables 

Since mathematics was first applied in psychology to psychophysics, let me begin 
there. Aside from some curve-fitting techniques, little happened after Fechner until 
Thurstone (1927a,b,c), who I would say was the first mathematical psychologist 
in this century. Why the wait? I suspect it was primarily for the arrival of the formal 
concept of a quantity whose value varies somewhat from observation to observation 
but which, nonetheless, can be thought of as unitary-what we now call a "random 
variable." Thurstone did not use that term, but he exploited the concept. He (and 
almost everyone after him who has modeled psychophysical phenomena) assumed 
that when signals which vary in one dimension are presented, each may be treated 
as if it is represented in the mind by a single number which fluctuates a bit from 
presentation to presentation. By slicing up the scale of the representation into 
intervals corresponding to possible responses, the exact location of the representa- 
tion on each trial determines the response on that trial. Although Thurstone was 
much interested in conceptual matters, his followers tended to be swept up with the 
complexities of estimation, fitting, and computation, which at the time were grave. 
He and they failed to note, or to make anything of, the fact that the model strongly 
suggests that the subject can, by varying the response criterion, effect a trade-off of 
response errors. It was another twenty-five years before the importance of that was 
first recognized. 

Psychologists connected with the Second World War were brought into contact 
with two major ideas from engineering and one from statistics: the theory of signal 
detectability, information theory, and decision theory. All three are a part of our story. 

Theory of Signal Detecta bility 

The theory of signal detectability (Green & Swets, 1974; Swets, Tanner, & Birdsall, 
1961; Tanner & Swets, 1954) gave a plausible account of how a vector representa- 
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tion of a signal, which probably exists since a number of peripheral neurons are 
excited by any signal, can lead to a normally distributed random variable much as 
Thurstone had assumed. But it also great emphasis on the error trade-off 
-called the ROC curve-resulting from criterion changes. And it applied decision 
theory to explain those changes. When psychologists looked, subjects did indeed 
exhibit error trade-offs somewhat, but not exactly, like those predicted by decision 
theory (Green, 1960; Swets et al., 1961). As a result of those discrepancies, attempts 
have been made to use learning models to account for criterion change (Atkinson & 
Kinchla, 1965; Dorfman & Biderman, 1971; Dorfman, Saslow, & Simpson, 1975; 
Luce, 1963). In part because the theory of signal detectability does not generalize in 
a very satisfactory way beyond two signals, numerous later models have provided 
alternative accounts of the Thurstonian random variables. One group of these 
assumes they arise from some sort of aggregation of neural pulses where pattern and/ 
or rate are affected by the signal (Grice et al., 1979; Green & Luce, 1973; Luce, 
1977a; Luce & Green, 1972, 1974; McGill, 1967; Siebert, 1968, 1970). Work 
along these lines was heavily influenced by the developing understanding of how 
information is encoded in the peripheral nervous system (Galambos & Davis, 1943; 
Kiang, 1965; Kiang et al., 1962; Rose et al., 1967, 1971). 

Informa tion Theory 

Until the late 1950s, information theory (Shannon, 1948; Shannon & Weaver, 
1949) was a major psychological fad: many papers resulted, but they had, I fear, 
little of lasting import for psychology. Since we all agree that much of our concern 
is information processing, why was this so? There are at least two reasons. First, the 
theory is concerned entirely with the statistics of messages-with, for example, how 
to encode a message to combat chance errors in the transmission-but it is not at all 
concerned with conveying or extracting meaning. Our concern is largely the latter 
and how that manifests itself in the behavior of organisms. Second, the theory 
makes much of a measure, the expected value of -log P, called "entropy" or 
"uncertainty." Whenever a probability vector or distribution is collapsed into a 
single statistic-be it a mean, a variance, an entropy, or what have you-care must 
be taken to ensure that nothing much is lost. This was ultimately shown wrong for 
entropy in psychology. For example, much was initially made of the fact that mean- 
choice reaction time is linear with the entropy of the stimulus display-Hick's 
law-until Hyman (1953) carefully studied the component parts and showed their 
times were not simply related to -log P. 

As one would expect, there are some important residues (an early summary is 
Luce, 1960). One, 1 believe, is a result made famous by Miller (1956) as one of the 
three empirical bases for his concept of a magical number 7+-2 limiting our 
information-processing capabilities. One can state the result easily without refer- 
ence to information theory. Two 1000-Hz tones 5-dB apart can be absolutely 
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identified by anyone with normal hearing. But seven tones spread at 5-dB steps 
cannot be; the intervals have to be roughly tripled. Why is this important? Because 
it means that the Thurstonian random variable depends not only on the signal that 
is presented, but also on those that might have been presented. If a particular tone is 
presented, the variance of its representation is roughly an order of magnitude larger 
if it is in the context of identifying one of seven than if it is one of two tones (Braida 
& Durlach, 1972; Durlach & Braida, 1969; Gravetter & Lockhead, 1973). This 
strongly violates most peoples' intuitions about signal transduction, and therefore it 
poses a conceptual problem. Luce, Green, and Weber (1976) have attempted to 
resolve it in terms of selective attention affecting the neural sample sizes on which 
the representations are based, and Shaw (1980) has cited some supporting evidence 
in another area. But not everyone is convinced this explanation is correct. 

Sensory Scaling 

Another theme dating from Fechner and interlaced with the problems just dis- 
cussed is sensory scaling. Fechner (186011966) thought he had solved it by postulat- 
ing that a just-noticed sensory change is the same everywhere, no matter the size of 
the physical change required to produce it (see Falmagne, 1974, for a modern 
summary of the mathematics). Thurstone (1927b) simply had it as the expected 
value of his random variable representing the signal, but for computational reasons 
he wound up being forced essentially into Fechner's mold. Stevens (1957, 1961, 
1975) said both were wrong in assuming any necessary interlock between the mean 
and the variance, citing physical mechanisms of various sorts as cases in point. He 
invented methods of so-called direct scaling to get at it, but showed little interest in 
how these measures related to the rest of psychophysics, where variability and error 
were the data. The debate still swirls actively today. Increasingly, however, scales 
play a role in theorizing about psychophysical phenomena of all sorts, and the so- 
called direct methods are more a problem to be explained than a direct insight into 
the mind. 

Criteria for Psychophysical Modeling 

For me, there are four criteria that must be met by any proposal to understand 
psychophysical data. First, the internal representation of a signal should be consis- 
tent with peripheral neurophysiological data, and in particular, while it must de- 
pend upon the stimulating conditions just before, during, and just after the signal 
presentation, it should not depend upon the experimental context within which the 
signal is embedded. Second, a model for any psychophysical experiment, from 
detection through cross-modality matching, should simply be an account of a 
plausible decision process carried out on the signal representation. Third, any 
experimental method, "direct" or not, does not, by fiat, provide a direct avenue to 
some truth. It requires a theoretical account just as much as any other experimental 
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procedure. If it is shown that some statistic of some method is proportional to the 
expected value of the signal representation, then that is, indeed, a nice way to 
estimate a sensory scale. But that needs to be shown, not assumed. Finally, my 
fourth criterion, which is perhaps more controversial but I think equally valid, is 
that the theory should give a natural account of response times. In particular, it 
should explain speedlaccuracy trade-off results. Any theory that starts by assuming a 
random variable representation does not easily meet this criterion. Rather, one 
must explicitly postulate how information accumulates with time, and this means 
that the representation must be a sequence of random variables-a stochastic pro- 
cess-in order to account for the times taken to respond. Examples of such models 
are Green and Luce (19741, Link and Heath (19751, Ratcliff (1978). Although I 
think these criteria are clear, and possibly philosophically sound, carrying out work 
along these lines has proved trickier than one might have contemplated, and we are 
far from a fully articulated comprehensive psychophysical theory that encompasses 
the best known procedures. 

Miscellaneous Visual Models 

Once one turns from general matters to specific sensory modalities, there is such an 
overwhelming amount of research that one hardly knows what to say. Let me, 
therefore, pick several examples with strong mathematical themes. The first theme 
is Fourier methods. The concern here is with alternative representations of a wave 
form, one as a function of time and the other as a function of frequency; or, in 
statistical terms, a distribution and its characteristic function. This duality has long 
played a role in audition, and in recent years has come to be highly dominant in 
vision where it is thought that one aspect of perception may be a spatial Fourier 
analysis (Graham & Ratliff, 1974; Robson, 1975). Such theories are inherently 
perceptual since the calculation of the transform is over a large region; it is, by its 
nature, not a local concept. This has led to a program of experiments involving sine 
wave gratings. It is premature to say where this is going to end, but it clearly has had 
several effects, among them that physical scientists have been attracted to work on 
visual perception, and there is a deepening grip of mathematical methods in these 
areas. Let no orie approach these gratings who is uriwillirig to study advanced 
calculus. 

The second theme is geometry, in particular, the geometric nature of visual per- 
ception. We  view an outside world that ~hysics tells us is three-dimensional and, 
at the speeds with which we can deal, locally Euclidean. It is projected on two two- 
dimensional surfaces which can be moved in certain ways, and out of that is 
somehow constructed an internal model of that physical world. What are the 
geometric properties of such a representation? This is no place to try to detail any 
results: suffice it to say that the question is less easy to answer than it might seem 
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(Blank, 1959, 1961; Indow, 1974; Luneberg, 1947; Suppes, 1977), and it continues 
to be under active investigation. 

Continuing for a moment with vision, let me cite a final area, color vision, in 
which mathematical modeling has and continues to play a role. Empirical evidence 
has accumulated over the years that makes clear that there is an initial physiological 
three-color code which is rather radically altered for some behavioral purposes into 
a coding of opponent colors (DeValois & DeValois, 1975; Hering, 1878; Hurvich & 
Jameson, 1955; Jameson & Hurvich, 1955). Active work goes on in an attempt to 
understand mathematically what is involved here and how it relates to other aspects 
of vision; one lovely axiomatic study of this is Krantz (1975). 

Learning and Memory 

The attempts mathematically to model learning do not trace back nearly so far as do 
those for psychophysics. Hull (1943), and to a lesser degree Spence (1956), under- 
took early mathematical formulations, but today that elaborate program is largely 
dismissed as not very satisfactory modeling. More mathematically satisfactory work 
was carried out by Thurstone (1930) and Gulliksen (1934), but it suffered from the 
fact that it only tried to deal with average performances. As we now know, many 
quite different theories lead to the same or very similar mean learning curves, and 
one must provide a much more detailed understanding of the entire process. Just as 
the entropy measure often results in a combining of dissimilar things, so, too, the 
mean may cause interesting information to vanish from sight. For example, the 
mean may be the same whether the distribution of behavior is tightly centered about 
the mean or is U-shaped, with a fraction of the animals doing one thing and the rest 
doing something totally different. 

The Rise of  Markov Models 

Serious modeling of learning awaited the development and infusion into psychol- 
ogy of knowledge about stochastic processes. Such processes are simply collections 
of random variables indexed by time. If the time variable is discrete-convention- 
ally the integers-then it is said to be a "discrete-time stochastic process"; if time is 
continuous-conventionally the real numbers-then it is called a "continuous- 
time process." Although the case of independent random variables is of great 
interest in statistics, in learning, each random variable, which describes the propen- 
sity to select among the alternatives at an instant in time, is a function of the past 
events of the process, and so is by its very nature not independent of the past. The  
task is to describe the dependence. 

In the 1950s two major ideas arose, both involving discrete time processes corre- 



111. PSYCHOLOGY AND ITS INTERSECTING DISCIPLINES 

spending to learning experiments with trials. The one was the linear operators of 
Bush and Mosteller (1955). Basically, on each trial the organism is assumed to be 
described by a vector of response probabilities over the possible responses. A re- 
sponse is made according to the distribution, a reinforcement occurs, and together 
they determine a new vector for the next trial, with the changes all being linear. 
(Later, I suggested a class of nonlinear models in which the order of application of 
the operators was immaterial [Luce, 1959, 19641.) Note that such models have a 
very important, simplifying feature known as the "Markovian property": the current 
vector of probabilities depends on the preceding one, but not on any before that; it 
does not matter whatsoever how one gets to that vector; there is no memory other 
than that embodied in the previous vector. 

At much the same time, Estes (see Atkinson & Estes, 1963, for a summary) was 
developing his theory of stimulus sampling for learning. Here the key idea was a 
mechanism of associative memory, involving what he called stimulus elements that 
are individually associated with responses. On  each trial a sample of the elements is 
selected, the relative balance of associations thereby determining the response 
made. Following the response, the conditioning of the sample is or is not changed, 
depending on the reinforcement of that trial. This, like the Bush-Mosteller model, 
has the Markovian property, but unlike theirs, the possible probabilities are re- 
stricted to a finite set, and this led to what is technically called a "Markov chain." In 
a certain limiting case, it approached the linear operator model. 

The Demise of Markov Models 

Under the influence of Atkinson and Bower (for surveys see Atkinson, Bower, & 
Crothers, 1965; Atkinson & Juola, 1974; Greeno, 1974), it was not long before a 
family of Markov chain models for learning and memory processes were developed 
that were entirely independent of the stimulus-sampling interpretation. A charac- 
teristic difference between the operator models and the chain ones was that the 
former suggested the learning occurred in small steps, the latter, in rather discon- 
tinuous jumps in memory states. In a classic experiment, Bower (see Atkinson et 
al., 1965, Chap. 3) showed that of the two types of models, the discontinuous one 
was clearly the better. This led to a massive program at Stanford University of 
Markov chain modeling and to the group of people, sometimes more or less affec- 
tionately referred to as the Stanford Mafia, who have been major actors in devel- 
oping the memory part of cognitive psychology. Curiously, as that developed, fewer 
and fewer mathematical models were involved, and there was more and more 
computer simulating. Let us examine what happened. 

The routing of the operator model was relatively complete. True, Norman (1972) 
developed a beautiful general theory of them; they continued to play a minor role in 
psychophysics; and they have come to play a role outside psychology in engineering 
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and elsewhere. Nonetheless, Markov chains won the day; and yet a decade later 
they were passe. As I see it, there were two related major reasons. The first was the 
Markov property itself. This made for easy analysis, at least for Markov chains, since 
their theory is very complete, but these were memory models that denied much real 
memory or else forced incredibly complex memory states. They could not account 
in a reasonable way for the fact that an animal resists extinction far longer after 
partial reinforcement than after 100 percent reinforcement. The models admitted 
hardly any cognitive power, no notion of analysis of patterns from the past, none 
but the most primitive memory. 

The second problem is far more subtle, but, in my opinion, crucial. Let me state 
it this way. These models failed to meet the following criterion, which I consider to 
be essential for successful modeling of behavior: that there should be a theory of the 
impact of stimuli and reinforcement on the organism separate from a description of 
the environment within which the organism is placed, and together these two 
generate a model of the organism in that environment. For those familiar with 
physics, it is analogous to having a theory of the relevant physical variables em- 
bodied in a system of equations and a set of boundary conditions describing the 
particular context within which the process is unfolding. In particular, parameters 
about the organism that are estimated from two distinct experiments should agree 
to within the error resulting from the data. Whenever one has only models of ex- 
periments, with no separable theory of the organism, then one has a hopeless 
feeling that no information is accumulating. The Markov chains were models 
of the combined subject and experiment, and no separation was suggested. 
This, by the way, was not really true of Estes's original stimulus-sampling 
model. 

Another fact about these models, although I think it did not especially bother 
those at Stanford, was that they were limited to discrete trial experiments and did 
not encompass free responding. There was a little work (Donio, 1969; Norman, 
1966) to generalize them to operant situations, but it did not attract much attention. 
During the past five years or so, however, operant psychologists, largely under the 
leadership of Herrnstein, have begun to develop mathematical models for various 
operant procedures (de Villiers, 1977; Herrnstein, 1974). Two major lines are being 
pursued. One is to try to view the behavior as resulting from some sort of continu- 
ous-time stochastic process that is being affected by the experimental reinforcement 
schedule which is itself a continuous-time stochastic process that may or may not 
depend on the behavior (Heyman & Luce, 1979; Staddon & Motheral, 1978). The 
other thrust is to try to involve ideas from economics, treating the rats and pigeons 
as if they are "economic men." The preliminary evidence is that animals fit that 
model rather well, better than human beings do (Rachlin, 1979; Rachlin & Burk- 
hard, 1978; Shimp, 1975), providing that one does not insist on maximization of 
overall reinforcements. 
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Memory and Response Time 

As the emphasis shifted from learning and Markov chains to a concentration on 
memory, another important change occurred. The focus came to be less on accu- 
racy of performance-the studies were mostly designed so that performance was 
nearly perfect-while the emphasis was on the time to carry out the information 
processing (Audley, 1974). Perhaps the earliest and clearest example of that was the 
technique evolved by Sternberg (1969a, b). The basic idea is that by manipulating 
various stages of the internal processing, one affects the response times. The  prob- 
lem is to infer from the times the nature of the processing involved. This continues 
to be a very appealing idea, one that should continue to receive a great deal of 
attention, in particular drawing on the forms of the time distributions rather than 
just their means. But as Grossberg (1978), Townsend (1976), Theois and Walter 
(1974), and others have been at pains to point out, it is not without problems. 
Without information other than the time, it is probably impossible to infer any 
unique structure generating those times. Added constraints are needed. We  run 
into the same problem in certain psychophysical modeling, but there at least we can 
draw upon peripheral neurophysiology to limit our choices; it appears to be less easy 
to do something comparable in cognition. 

Measurement and Scaling 

I have already made some general remarks about the, to me, important problems of 
axiomatic measurement, and I shall not pursue that much more except to mention 
what I consider the two or three most important developments. 

Decision Theory 

The  earliest measurement theory totally distinct from those of physics, the one 
which convinced many of us that psychological measurement might ultimately 
prove tractable, was expected-utility theory and its subjective variants resting on the 
ideas of qualitative probability (Fine, 1973; Fishburn, 1970; Krantz et al., 1971, 
Chaps. 5, 8; Luce & Raiffa, 1957; Ramsey, 193 111964; Savage, 1954; von Neumann & 
Morgenstern, 1944). The  main idea was to study choices among alternatives where 
the outcome is partially under the control of chance. These concepts, together with 
both the multivariate ideas mentioned below and the use of Bayes's theorem to 
incorporate information in probability assessments, has spawned an area of some 
applied value called decision analysis (Bell, Keeney, & Raiffa, 1977; Pratt, Raiffa, 
& Schlaifer, 1965; Raiffa, 1968; Schlaifer, 1969). 

In a sense, this can be viewed as one of the first attempts to provide a cognitive 
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analysis of human responses-it is cognitive because the situation itself is subjected 
to analysis rather than being dealt with in some relatively reflexive or associative 
way. The resulting theory appears to provide a fine analysis of what is a rational 
approach to such problems, one that is partially descriptive of what people do. 
However, after a good deal of probing experimentation, it is now clear that people 
are doing something different. The evidence is overwhelming that context affects 
the decisions in a way we do not yet understand (Coombs, 1969; Coombs & Huang, 
1970, 1976; Grether & Plott, 1979; MacCrimmon, 1968; MacCrimmon, Stan- 
bury, & Wehrung, 1980). The area is so important, the data are so tantalizingly 
regular, and the modeling so elegant, I have no doubt that we will persist in trying 
to crack this nut. 

Con joint Measurement 

Another major measurement development, dating back nearly twenty years (De- 
breu, 1960; Luce & Tukey, 1964), is conjoint measurement and its close relation, 
multiattribute utility (Keeney & Raiffa, 1976). This exploits the fact that an order- 
ing of multifactor stimuli is really rather more structured than one first realizes, 
provided the factors can be manipulated independently. There is a trade-off be- 
tween factors that can be studied and exploited. Physics has long done so-e.g., 
saying that kinetic energy is proportional to mass and to the square of velocity 
describes those trade-offs that leave the energy unchanged-but physicists and 
mathematicians failed to work out the corresponding qualitative theory. This has 
now been done not only for the cases of interest to physics, but also for a number of 
other cases that may be pertinent to psychology, especially ones for which the 
representation involves distributive mixtures of addition and multiplication (Krantz, 
1972, 1974; Krantz & Tversky, 1971; Krantz et al., 1971; Narens, 1976; Narens & 
Luce, 1976). Elaborate computer programs now exist which make the applications 
of these methods quite practical, provided that the data are not too plagued by error 
(Young, 1972). The task of generalizing the models to handle error, important as it 
is, has only just begun with the work of Falmagne (1976) and ~ a l m a ~ n e  et al. 
(1979). 

~ e f o r e  turning to other matters, I cannot refrain from mentioning that the devel- 
opment of theories relating.additive conjoint and extensive measurement has pro- 
vided an adequate qualitative account of the entire structure of classical physical 
quantities (Krantz et al., 1971, Chap. 10). Moreover, by bringing to bear the at- 
tempts to clarify the idea of meaningful measurement statements (Stevens, 1946, 
195 l), there has developed a satisfying explanation why natural laws are dimension- 
ally invariant (Adams, Fagot, & Robinson, 1965; Krantz et al., 1971; Luce, 1978; 
Pfanzagl, 1971; Suppes & Zinnes, 1963). The upshot is a better understanding of 
why the useful method of dimensional analysis works. 
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Three Types of Scaling: Probabilistic, Functional-Measurement, 
and Multidimensional 

From the point of view of the working psychologist, much of this work in measure- 
ment has seemed esoteric, and three other scaling methods enjoy far wider use. 

The  oldest are probabilistic-sometimes inappropriately called "stochastic"- 
models of choice which assume an underlying scale from which the probabilities 
arise. Thurstone's model, viewed in a wider context than psychophysics, is of this 
character, as is my 1959 choice-axiom model (Luce, 1959, 1977b) whose relations 
to Thurstone have been so neatly developed by McFadden (1974) and Yellott 
(1977). The  data have made clear its limitations, which first Restle (1961) and later 
Tversky (1972a, b) have attempted to overcome by working out explicit notions of 
the similarity of stimuli which appears to play a crucial role in people's choices. 

Next is the work of Anderson (1974) arid his students on what they call "func- 
tional measurement." The  context is similar to that of conjoint measurement, but 
instead of working with orderings and axioms, they begin with numerical data and 
an assumed representation and they fit the representation to the data using analyses 
of variance methods. The  range of application has been impressive and influential, 
especially in the so-called "soft areas" of psychology. 

The  last and probably the single most successful area of scaling is that of 
multidimensional scaling, especially the nonmetric version (Carroll & Wish, 1974; 
Shepard, 1962, 1974; Torgerson, 1952, 1958, 1965). The input data concern the 
similarity of stimuli, and even numerical data are treated as providing only ordered 
information about sinlilarity. The model is usually assumed to be n-dimensional, 
Euclidean space, with the ordinary distance metric reflecting the ordering of the 
data, although other spaces have been looked at. The procedure is to find that 
monotonic transformation of the ordering that yields the smallest number of dimen- 
sions providing an adequate account of the data. The mathematics of what is 
involved has never been fully worked out although there has been some partial work 
(Beals, Krantz, & Tversky, 1968; Tversky & Kraritz, 1970); but computer software 
for doing what I have described is well develop'ed. In a number of applications, the 
results have been most impressive, almost always giving a much more comprehensi- 
ble representation of the data than does its major competitor, factor analysis. 

Similarity and Categorization 

As I said earlier, the major problem in all of these measurement and scaling 
applications is getting the empirical ordering of the attribute of interest. In the three 
scaling methods just discussed, this is resolved largely by getting subjects to establish 
the order. The subject tells the experimenter about the similarity of stimuli. This is 
fine as far as it goes, but one suspects that in the long run there needs to be 
developed a theory of similarity or, what I believe to be the same thing, categoriza- 
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tion. Tversky (1977) has offered one interesting analysis, discussed by Krumhansl 
(1978), but perhaps the most striking developments along these lines right now are 
not theoretical but empirical. Especially important is the work on natural categories 
of Cerella (1979), Herrnstein (1979), Herrnstein and de Villiers (1980), and Rosch 
et al. (1976, 1978). It is not unusually difficult, by showing a pigeon slides of trees 
and branches which are reinforced and nontrees which are not, to draw forth the 
concept of tree so that the pigeon henceforth responds appropriately to new tree and 
new nontree slides. More striking, one can do the same thing using underwater 
shots of fish in natural habitats and fish-free water habitats, an environment not 
much a part of the recent experience of pigeons. Nloreover, pigeons agree with us 
about what is a typical fish, making errors just when we do. We know little about 
this area, but it is clear that the instances of natural categories are complexly related 
to one another, and it invites much, much more work. This is something that 
seems basic, important for a behaving organism, and approachable in the labora- 
tory. It will be an enormously important conceptual challenge to mathematical 
psychologists. 

Concluding Remarks 

In closing, I am supposed to assess where we are. That is complex, and anything I 
say is bound to be incomplete, unsatisfactory, and, probably, misleading. Never- 
theless, I shall try. 

1. Not everything published in psychology with equations or mathematical 
terms in it is, necessarily, a serious or satisfactory attempt to involve mathematics in 
theory development. Some cases are now easy to recognize-t.g., Lewin's (1935) 
hand waving of topology or Hull's (1943) ponderous learning theory. Other more 
recent cases strike me as more subtle, and I approach them with some concern that I 
am wrong. All the cases I have in mind exhibit a pattern. First, they note that some 
branch of mathematics, often a highly respected one, exhibits qualities not unlike 
the empirical ones of some branch of psychology. Second, to suggest that there is 
something to the analogy, attempts are made to identify certain of the mathematical 
concepts with usually informal psychological concepts. However, this step is nota- 
ble for the lack of any detailed identification between the principal terms of the 
mathematical theory and specific empirical objects or relations. Third, the level of 
abstraction is usually very high, comparable to that of advanced physical theories 
such as quantum mechanics or the general theory of relativity, but this is in areas 
which, unlike physics, have not yet seen detailed, low level, empirically testable 
theories from which to generalize and abstract. Fourth, the sponsors are usually 
well-trained and often respected mathematicians whose knowledge of psychology 
and whose empirical experience, even in the physical sciences, is very sketchy. 



111. PSYCHOLOGY AND ITS INTERSECTING DISCIPLINES 

At the risk of making enemies across the board, let me cite several specific 
examples of what I have in mind: catastrophe theory for any phenomenon that 
exhibits discontinuous jumps and hysteresis (Kolata, 1977; Poston & Stewart, 1978; 
Saari, 1977; Smale, 1978; Sussmann & Zahler, 1978; Zeeman, 1977); tolerance 
spaces as models of the mind (Zeeman, 1962); fuzzy set theory for anything involv- 
ing-an apparently imprecise boundary; and lie groups as a way to account for visual 
illusions (Paillard et a]. , 1977). 

2. My second general observation is that we have failed more often than we have 
succeeded to construct theories of the organism rather than models of an organism 
in a particular experiment. Only to the extent that we begin to do that will our work 
achieve a cumulative character. To  a degree, this has happened in sensory psychol- 
ogy, and I think that is one of the reasons that mathematics is such an integral part 
of that area. 

3. Our theories are of two types, as in physics. One involves concepts and 
constructs at only one intellectual level-in our case, observed macro behavior. The 
operator models for learning and much of measurement and scaling is of this type. 
The other involves concepts and usually mechanisms at one level, often a postu- 
lated, unobserved mental process, to account for observations at a different level. 
The sensory random variables, the stimulus elements sampled in Estes's early 
learning theory, and the stages of memory encoding and processing of Sternberg's 
theory of memory are all of this character. These reductionistic theories seem far 
richer and intuitive than the wholly behavioral ones, which is both their appeal and 
their weakness. Only to the degree that one can bring to bear data appropriate to the 
explanatory level is it possible to avoid endless arguments about the identifiability of 
concepts. So far, this has been done successfully, and there only to a very limited 
degree, in sensory psychology. Other concepts that one hopes have a solid physio- 
logical basis, such as memory stores of various sorts, have so far eluded physiologi- 
cal isolation. Nonetheless, extremely interesting and deep investigations along these 
lines are beginning to appear, e.g., the current work of Grossberg (1980). 

4. Although there is at least a superficial happy match between stochastic pro- 
cesses-i.e., time-indexed random variables-and our experimental procedures, 
whether with trials or free response, not all is well. The development of cognitive 
psychology has departed from that mode. Part of it, that having to do with grammar, 
draws on ideas of recursive functions and logic, and that having to do with memory 
has drifted more and more toward computer simulations, where complex options 
are easy to build in. Subjects seem to have available many alternative ways of 
behaving and it seems less stressful to most theorists to try to embody this in 
computer programs (Simon & Newell, 1974). I am yet to be convinced that this use 
of computer programs is really solving any problem. The difficulties we are having 
in cognitive psychology may be conceptual or experimental or both. We  may be 
asking the wrong questions, given our current understanding, and we may not be 
getting under experimental control enough of what goes on in the typical cognitive 
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experiment. For example, understanding natural categories may be a necessary, 
though hardly sufficient, precursor to understanding semantic memory, yet many 
more scientists have been working on memory than on categorization. In any event, 
I think some cognitive psychologists may have thrown over mathematics for com- 
puter programs a bit too fast. Some-those whose knowledge of mathematics is 
largely restricted to Markov chains-may have found this the easy route, but 
others-most notably Simon-have made a conscious and well-informed choice. 
My own hope-and it is little more than that-is that cognitive psychology will be 
the source of a new interplay of mathematics and psychology, and perhaps in the 
long run the source of some new mathematics. 

My conclusion that mathematics in psychology is here to stay will come as no 
surprise. T o  the degree that a scientist thinks there is some redundancy in what he 
of she observes and reports, that not everything is independent of everything else, 
then he or she is dealing with structure. And that is exactly what mathematics is the 
study of. The  only problem is to isolate those structures appropriate to psychological 
phenomena. Our  success in doing so, while considerable, is rather less than I 
should like to be able to claim. Still, mathematics and computer simulation are 
really the only games in town if you want to understand and to predict data. 
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